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Abstract. We describe a foim of piecewire detemrnistic dynamics. where solutions evolve 
deterministically throughout most of phase space, but, in the presence of noise, make non- 
deterministic jumps to other solutions when the trajectay passes near a singularity in the 
equations of motion. The type of singularity we consider in this paper is a single point where 
the Lipschitz conditions fail and many closed-loop mjectories share a common tangent point. It 
is shown that there is a finite unceltainty associated-with  the^ behaviou that is independent of the 
magnitude of the noise. "he long-term behaviour, while similar in appearance to deterministic 
chaos, has ntherdiffereiu implications for prediction q d  conuol. 

1. Introduction 

It is often assumed that classical physical systems governed by differential equations are 
determinisric [I], meaning that the forward time evolution is uniquely determined by the 
current state of the system. Correspondingly, determinism also implies that the system's 
cunent state uniquely determines its past behaviour. These qualities follow directly from 
the existence and uniqueness theorem of differential equations [Z], which requires that the 
equations of motion of the system are Lipschitz continuous. However, there is nothing in 
classical mechanics that requires Lipschitz continuity. Indeed, in the case of a cracking 
whip, the physical solutions imply violation of the Lipschitz condition [3]. A similar effect 
is seen in seismic waves as they approach the surface of the Earth [4]. 

If one relaxes the Lipschitz condition, an intriguing possibility arises, namely that 
uniqueness does not necessarily hold for solutions to the equations of motion. In such 
a case, solutions may actually intersect and it is not difficult to see that any sort of random 
fluctuations near such an intersection could have a profound impact on the time evolution 
of the system. We term such systems non-determinisric, as the forward (or reverse) time 
evolution is not uniquely determined by the equations of motion alone. The terminal 
dynamics described by Zak [SI utilizes such a mechanism where multiple trajectories 
intersect at a common equilibrium point in finite time. Chen [6] has independently 
suggested the same behaviour under the heading of noise-induced instability (though non- 
determinism as such is never explicitly mentioned). Other aspects of nonIdeterminisuc 
systems, especially in the presence of noise, have been explored by Hubler [7], and it 
has also been suggested that non-determinism may play an important role in biological 
systems [8]. The type of system we shall consider in this paper is of a somewhat different 
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flavour. Rather than have the singularity be an equilibrium point, we allow uniqueness 
to fail at a point where the equations of motion are non-zero. In particular, we examine 
the case where solutions of the system form a family of closed loops, all sharing a single 
common tangent point. 

2. The non-deterministic harmonic oscillator (NDHO) 

We begin with the simple harmonic oscillator (SHO), described by the equations 
d 

- y  = -x  . d 
-x  = y 
dt dt 

Solutions of (1) are circles in the (x ,  y) phase plane. The SHO is a deterministic system, so 
that every point (x .  y )  belongs to a unique solution described by a circle with a particular 
radius r = m. 

Suppose, now, that we apply the following non-linear coordinate transformation to the 
SHO phase space: 

x + x - r = x - m .  (2) 

This translates all points on a circle of radius r in the positive x-direction by an amount 
equal to r .  A family of circles concenmc about the origin in the original space will now 
share a common tangent point at the origin of the transformed space (see figure 1). The 
key feature of this transformation is that some subset of the original phase space decreases 
in topological dimension as a result of the transformation. For the case at hand, the entire 
x-axis is mapped onto a point. As we shall see, this type of 'infinity-to-one' mapping will 
be reflected in the behaviour of the transformed dynamical system. 

The equation of a transformed circle in the new space is given by 

(x  - r)* + y 2  = r2 (3) 

Figure 1. Some examples of circular 
orbits of different radii. all sharing a 
common point at the origin. 
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or, solving for r ,  

r = - ( x 2 + y )  1 2 
2x 
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(4) 

Using equation (4), we can easily apply the transformation to the SHO. The transformed SHO 
equations of motion in the new coordinate system are given by 

d y 2  1 -y = - - -2, d 
- x  = y 
dr d t  ~ 2x 2 

From the above discussion, the solutions of (5) will be the family of transformed circles, all, 
sharing a common tangent point at the origin. Such intersection of many phase space 
trajectories is not so unusual. An attracting fixed point, for example, is approached 
asymptotically for all initial conditions in its basin of attraction (i.e. solutions are unique 
for finite times). What is unusual about (5 )  is that the common point is intersected in finite 
time and further is not a fixed point. This is easily seen by taking the limit of (5) along a 
solution of radius r :  

d 
lim - y  = r 

X.S+O dt X.S-O dt 
d lim -x = 0 

Thus, the origin is a singularity of (5). where neither past nor future time evolution is 
uniquely determined. Henceforth, we shall refer to (5) as the non-deterministic harmonic 
oscillator (NDHO). 

The NDHO provides a simple example of the type of  system^ we are examining: solutions 
of the equations of motion are a family of closed loops (“sients’) all sharing a common 
tangent point.  from equations (6),  the dynamics of the NDHO are not defined by the 
equations of motion alone (though this is not a necessary condition for a system to be non- 
deterministic in the sense described in this paper 191; more details will be given below). 
However, let us imagine we have built an NDHO in a laboratory. How would it behave?~We 
note that all physical systems are subject to external perturbations, or ‘noise’. While the 
physical state of our NDHO is far (in~phase space) from the point (0, 0), extemal noise will 
have little effect, provided the average amplitude of the fluctuations is small compared to 
r for that trajectory. However, as the trajectory approaches the origin, noise plays a larger 
role. Solutions for all r converge together, ultimately intersecting at (0,O). Thus, noise 
will cause the trajectory to jump between solutions of widely differing r in a random way. 

What is the effect of this on our laboratory NDHO? Suppose we begin the system on 
a solution of radius r , .  As we watch the system evolve forward in time, we will find 
that after it passes near the origin the trajectory has changed to a completely different 
solution of radius r2. Repeating the experiment with the same initial conditions, we find 
that the trajectoly jumps to a completely different solution of radius r3, where r3 # r2. 
Were we to repeat this a large number of times, for different values of r , ,  we would find 
that the solution after the singularity is completely unrelated to the solution before. If 
the NDHO were allowed to run for several oscillations, a time series measurement of one 
variable would appear as a piecewise continuous sequence of oscillations with different 
amplitudes. Further, the sequence of amplitudes would be random and unpredictable. We. 
term this behaviour piecewise deterministic dynamics, since in between jumps the behaviour 
is essentially deterministic, but changes in an unpredictable way at some particular point 
along the trajectory. 
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3. A physically motivated example 

Let us now describe a non-deterministic system, based on physical considerations, which 
exhibits piecewise deterministic dynamical behaviour. This system is a model of the 
behaviour of neutron star magnetic fields. We describe it briefly; for a more detailed 
discussion, the reader is referred to [IO]. 

The model envisions two equal but oppositely charged concentric spherical shells which 
are allowed to rotate differentially. The magnetization of one shell ( M I )  will interact with 
the magnetic field of the second shell (Hz),  as well as experience non-electromagnetic 
('mechanical') interactions with the surrounding medium. The magnetic interactions include 
a term to induce precession of M I  about the instantaneous direction of HZ and the 
Landau-Lifshitz magnetic damping, which tends to align M ,  with the direction of H2. 
The mechanical interaction is taken as a simple damping, proportional to the difference in 
angular velocities of the two spheres. Parametrizing the interactions, we obtain the following 
equations: 

Following the scaling procedure described in [lo] and conserving angular momentum, we 
airive at the following equation: 

where m is the scaled magnetization, r is the scaled time, h is the scaled Landau damping 
parameter and t is the scaled viscous damping parameter tensor. 

Examination of (8) reveals axial symmetry about the z-axis. This prompts us to make 
the following transformation: 

(9) 
m y  
m, 

z = m ,  @=arctan- x = 4- 
which implies 

m, -+ xcos@ m,. -+ x s i n 4  m, + z 
Substituting the above transformations into (8), we obtain 

and 

& = 1  (12) 
where an overdot again represents differentiation with respect to the scaled time r. The 
@ equation is trivial, simply representing a constant precession about the z-axis. Any 
interesting dynamical behaviour must occur in (1 1). 

Numerical integration of (11) for E c A yields the phase space plot in figure 2 and 
the time series in figure 3. Note the apparent intersection of trajectories near the origin, 
indicating that something strange is happening in this region. Indeed, it can be shown [9, 1 I] 
that for the RHS of (11). the point (0.0) is a non-Lipschitz singularity. We use the following 
argument to show that the point (0,O) is shared by all bounded trajectories (for more details 
the reader is referred to [9, 1 I]): 

(i) The only fixed point of (11) for E c A is at  (0, 1). 
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Figure 2. Phase plof of solutions 
in the neutmn star model for A = 
1 . 0 . ~  =0.6,T=0.7.  

Figure 3. Time series z ( i )  versus 
i for the neuvon star model w i ~  

20 LO 60 8o paramerer values A = 1 . 0 , ~  = 
k 0.6, B = 0.7. 

-0.2 

(ii) The sole fixed point is a saddle and thus is not an attractor for a set of initial 
conditions of non-zero measure [12]. This also implies that no periodic orbits exist 1121. 

(iii) By the Poincark-Bendixson theorem, if the solutions of a two-degree of freedom 
dynamical system contain only Lipschitz points, then the only possible bounded asymptotic 
solutions are stationary or periodic. As neither possibility exists for (ll), (0,O) must be 
contained by bounded solutions for all initial conditions. 
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At this point, the reader may be concerned about the seemingly unphysical nature of 
intersecting phase space trajectories. However, we are discussing the behaviour only in 
the presence of noise. The singularity, being a sct of measure zero, is never actually 
encountered. Even so, the nature of the solutions near the singularity combined with the 
presence of random perturbations will have a definite effect on the dynamical behaviour. 
Another interesting technical point is that in the absence of noise equations (1 1) are actually 
deterministic. It can be shown [9] that if the singularity is approached along any of the 
solutions of (II), the derivatives are uniquely defined. This is to be contrasted with the 
NDHO, for which the value of the RHS of the equations of motion at the singularity could 
not be uniquely determined, even in the zero-noise limit. Equations (11) are thus not 
rigorously non-deterministic in the sense of the ”IO. However, the introduction of m y  
noise, no matter how small, destroys the determinism of the neutron sfar model and so in any 
physical situation, we deem the equations of motion to be effectively non-deterministic at 
the singularity. Of course, noise itself is stochastic, so rigorously speaking, the preceeding 
statement applies to all dynamical systems. As we shall see in the following section, what 
one really should examine is the largescale time-averaged behaviour in the presence of 
noise compared to the classical, zero-noise behaviour. 

4. Uncertainty in piecewise deterministic dynamics 

Let U now take a close look at the effect of uncertainty in a dynamical system in an effort 
to see what is implied by the existence of the type of non-deterministic singularity we have 
described. While one often describes systems in the classical domain by deterministic rules, 
a real system is always subject to uncertainty due to inaccuracy in our measurements, the 
effect of external perturbations and ultimately quantum mechanical uncertainty. Rather than 
attempting to account for all of these via one single equation, we divide an experiment into 
a ‘system’ (the thing being studied) and ‘noise’ (everything else). As the ‘noise’ generally 
involves many (10%) degrees of freedom and is often attributable to causes outside of our 
control and knowledge, we are forced to treat the noise in a statistical manner. 

In general, weXhink of a dynamical system as a set of differential equations 

which describe the evolution of the J dependent variables x j  in some J-dimensional phase 
space (we will confine our discussion to autonomous systems). In purely mathematical 
terms, each point of the phase space is unique and distinguishable. For a physical system, 
however, this is not true. The noise. implies a minimum uncertainty scale, which we shall 
call 6. Two points closer than 6 will be indistinguishable. Let us then divide up our phase 
space into many regions of size 6, eich with a volume a 6’. We may then think of 
calculating the average behaviour of (13) in each volume, as well as the expected variance 
about this average. 

Suppose that f ( x )  is a polynomial, or Taylor expandable within a given volume centred 
on a point xo (all such functions necessarily satisfy the uniqueness theorem). For notational 
simplicity, we take our example as a two-dimensional system, though the result applies to 
systems of any dimension. The Taylor series in this case is 
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where aij represents the series coefficents. The average value of f ( x ,  y) in a given volume 
is 

( f b o  + x ,  YO + Y ) )  = - /+‘I2 /+‘I2 f(xo + x ,  yo + y)  dx dy 

(15) 
v -612 -612 

1.612 +a12 

I.’ = s_,,, dx dy = ST 

where we have chosen the region as a cube of side 6 centred on (xo, yo), with total volume 
V = 6’. Applying this to the series in (14), we find 

(f(xo+x,yo+y)) =a~+$2(a20+aoz)+. . .  . (16) 
Note that terms with odd powers in x or y cancel when integrated over the symmetric 
interval, thus the average value ( f ( x 0  + x ,  yo + y)) is simply f ( x 0 ,  yo) plus correction 
terms in even powers of 6. Assuming 6 << 1, we keep only the leading correction term. 

Having found the average value of f ( x ,  y) in a cell, we now wish to find the uncertainty 
in this value and especially how this uncertainty relates to the fundamental uncertainty scale 
6 in the phase space. The root mean square (RMS) of f(x. y) over a cell is simply 

0 = ((f(x0 + x ,  YO + Y Y )  - (f(x0 +x, YO + YH2)”2 

(17) = ~ ( j . ( a , , + a & ) ) ’ / ~ .  1 2  

Not surprisingly, we find, that for ‘nice’ functions, the uncertainty (to leading order) in 
the dynamical vector field goes like the inherent uncertainty in the phase space. Thus in 
the ‘classical’ or ‘thermodynamic’ limit, where 6 is taken as very small, we find that the 
dynamics is essentially unchanged. The result applies even for deterministic chaos. The 
Lorenz~ equations, for example, are polynomial in the phase space variables. In the chaotic 
parameter regime, the non-linearity acts to spread any initial uncertainty across the strange 
attractor. However, this is (loosely speaking) a global property of the system. Locally, the 
dynamical uncertainty is related only to the uncertainty in the phase space variables. 

What happens when we apply the above analysis to the types of systems we are 
discussing in this paper? Both the NDHO and the neutron star model contain essential 
singularities and hence cannot be Taylor expanded around these points. However, we can 
explicitly calculate the average value and variance of the equations of motion in a phase 
space cell about the singularity. Consider the neutron star model. First, we note that 
because of the nature of the singularity, the quantities obtained for the various integrals will 
depend on the order of integration. This is easily dealt with by transforming to plane polar 
coordinates ( x ,  z) = (r sin@, r cos@) and taking the phase space cell as a disc centred on 
the singularity. Performing the integration over this cell, we find that the average~values 
are well defined 

(18) ((i), (i)) = (0, E - 3). 
The RMS deviations from these values are 

(19) 

and we now begin to see the fundamental difference between ‘smooth’ deterministic and 
piecewise deterministic dynamics. In the classical limit, the uncertainties in (19) do not 
become arbitrarily small! As 6 --t 0, we find that the~uncertainty in the RHS of (11) goes 
to 1/2& which is of the same order as ((X), (z)). In the presence of any uncertainty, 
regardless of how small, the equations of motion do not even approximately determine 

0; uz = /- . .  
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the behaviour near the singularity. This is why we term the dynamics described here as 
non-deterministic. 

Having established this key distinction, let us briefly compare deterministic chaos and 
piecewise deterministic dynamics. Again, the action of a deterministic chaotic system is 
to spread an initial uncertainty over a larger and larger portion of the strange attractor as 
time goes by. This spreading is caused by a global instability. associated with one or more 
positive Lyapunov exponents [13]. For piecewise deterministic dynamics, the uncertainty is 
essentially induced at a particular point, or more precisely, in some small localized region. 
The effect of this can be illustrated by using the information approach first suggested by 
Shaw [14]. Assuming that the amount of information contained in some region of phase 
space is proportional to the volume of the cell, the rate of information generation is 

where the RHS is the Lie derivative of the system, defined as 

1 dV 

The total change in the system information may be found as the integral of the Lie derivative 
w.1.t. time along the system trajectory. For a deterministic chaotic system, information is 
created at a rate proportional to the largest positive Lyapunov exponent. Noting that an 
increase in system information corresponds to a decrease in the knowledge of an observer, 
the phenomenon of deterministic chaos~implies a steady decrease of an observer’s knowledge 
of the system’s past, e.g. its initial conditions. Another way of looking at this is to say 
that nearby points on a trajectory have a high degree of correlation, while this correlation 
decreases as the points become more separated. Indeed, this property may be utilized when 
attempting a time series reconstruction of a chaotic system [15]. 

For the piecewise deterministic case, we examine the m H 0 ,  as we know the solutions 
analytically. Taking the initial conditions to be ( x ,  y) = (0.0) at r = 0, the solutions of (5) 
are 

x = A(l -cost)  y = Asint .  (22) 

The reader may, at this point, be concerned that we give the initial conditions at the 
singularity. We justify this by noting that with regard to information calculations, we 
can only talk about those points which are distinguishable. Since there will always be some 
uncertainty in the system, we are really referring to some set of points near the origin, with 
the initial conditions being somewhere within this region. The Lie derivative of the NDHO 
is given by 

(23) 

Integrating along a solution over half a cycle, we find the total information generated to be 

sinr 
A H = L  -- - log(1 - C0Sf)l;; = 00. 

1 -cost  ~~ 

The gain in system information is infinite, which means that the observer has zero knowledge 
of the system’s past. This is another key feature of piecewise deterministic dynamics: 
whenever a trajectory passes near the singularity, the future time evolution is completely 
decoupled from the past. 
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5. Piecewise determinism and predictability 

As shown above, piecewise deterministic dynamics has the property of being predictable 
for short times (between intersections of the singularity), yet completely unpredictable over 
long time periods. Long-term unpredicability is also one of the hallmFks of deterministic 
chaos, but it is here that the similarity ends. Aside from being described by deterministic 
equations, deterministic chaos is often characterized by exponential divergence of initially 
close solutions and associated with a complex fractal structure, the strange attractor. Non- 
deterministic chaos derives its unpredictability from a more violent, but localized instability. 
Further, there exists no attractor, strange or otherwise, at-least in the usual sense of the word. 

Formally, we can study the effect of noise on a ’classical’ system by constructing a 
Langevin equation, 

.i = f ( x )  + E W )  (25) 

where f (x)  represents the classical part of the equation of motion, @(?) is some random 
function with mean zero and standard deviation one which reflects the statistics of the 
noise and E controls the average size of the random perturbations. The trajectory in phase 
space indicated by (25) is a Brownian motion and as such there exists a time-dependent 
probability density of finding the system state at some particular point in phase space. Any 
initial probability density will tend to diffuse through phase space in a manner governed 
by the forward Kohnogorov equation [16]. The rate of this diffusion is directly related 
to the rate at which the system generates information, which is a measure of the system’s 
predictability. 

For the systems we have considered, the classical part of the Langevin equation is 
singular, and so the associated forward Kolmogorov equation will also be singular. The 
analysis in the previous section indicates that we expect an explosion of information at the 
singularity and this can be illustrated by integrating the Langevin equation for the neutron 
star model for some set of initial conditions confined to a small region of phase space. For 
this simulation, we took @(?) to be distributed as a Gaussian and E to be of the order of the 
integration step. Figure 4 illustrates the generation of information at the singularity due to the 
presence of external noise. Initially, we see smooth deformation of,the initial set of points. 
However, once the singularity is encountered, points are scattered and soon are randomly 
spread through a region of phase space (in this case, the region is enclosed by the homoclines 
of the saddle at (0, 1) [9]). Thk behaviour is in stark contrast to what one expects from 
deterministic chaos, where an initial volume is stretched and folded [13], spreading across 
the attractor in a smooth fashion. Dynamical measures such as the Lyapunov exponent are 
meaningless. The ‘attractor’ exists only in a statistical sense, representing the probability 
density that a particular point in phase space will be visited. This distribution is shown 
in figure 5 ,  and was calculated by integrating the Langevin equation for 200 million time 
steps. 

Figure 5 gives a long-term, global statistical picture. However, the simple structure 
of the solutions near the singularity allows us to easily extract more useful statistical 
information. In particular, we shall utilize the fact that away from the singular point, 
the dynamics is quite well behaved. Let us retnrn to the NDHO, as its solutions are known 
analytically. The solutions of the NDHO may be parametrized by their radius. Solutions 
away from the singularity have essentially constant radii: the big jumps occur only near the 
singularity. Can we predict the probability that a circle of given r is chosen when the orbit 
leaves some neighbourhood about the origin? Let us define this neighbourhood as a disc of 
radius 8 and note that an orbit leaving this neighbourhood does so with angle 8, which we 
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Figure 4. Loss of i n f o d o n  due to the singularity. (a) 10000 initial points are arranged in 
a 100x100 square. (b) Initid evolution. (e) When the singuiariry is encountered, inigily close 
points are scattered randomly. (4 All information about the initial conditions has been lost 
The only information carried by the system is in rhe density of trajectories. 

take as measured from the y-axis. Now, assuming the external fluctuations to be isotropic, 
the probability density of picking a particulac 0 is constant, i.e. 

p(0) dB cx d e .  (261 
Next, we note that everywhere except at the origin the existence and uniqueness theorem 
applies to solutions of (3, thus each circle of radius r is associated with a unique 0 and we 
may write 0 as a function of r. Substituting into p(0),  we find 

The probability of getting a circle between r and r + Ar is simply 

P(r,  Ar) o( [+& dr =0(r f Ar) - 0 ( r ) .  

For the case at hand, we find 
8 s 

2(r + Ar) 2r 
P(r, Ar) o( arccos - arccos - . 

This approach (first described in [ I l l )  is somewhat simplified. A rigorous derivation 
would account for the statistical properties of the noise and derive P(r,  Ar)  via stochastic 
calculus. The above does show, however, that the simple structure of the solutions of a non- 
deterministic system lends itself to the construction of statistical arguments. Further, with 
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Fwre 5. Probability of finding the system in a particular region of phase space. The distribution 
was found by integrating the quadons for 200 million steps and totalling the amount of time 
spent in each region. 

a judicious choice of 6 ,  based on knowledge of the average amplitude of the fluctuations, 
the above procedure should yield a good approximation of the true distribution P(r ,  Ar). 

6. Con&lling piecewise deterministic dynamics 

The control of deterministic chaotic systems using small perturbations has been a subject of 
recent vigorous research [15]. The most popular method of controlling deterministic chaos 
involves the stabilization of (otherwise) unstable periodic orbits which are embedded in the 
chaotic motion. As there exist an infinity of orbits, a rich variety of behaviours may be 
extracted f” rhe controlled deterministic chaotic system, allowing for flexibility and easy 
optimization of a system’s behaviour. 

For a piecewise deterministic system, we have a similar situation. With a continuum 
of different solutions intersecting at a single point, we can easily effect control via an 
appropriate perturbation. Similar to the previous section, we simply examine how solutions 
leave a 6-neighbourhood about the singularity. Again, away from the singularity the solution 
is well defined. Suppose that each different solution may be parametrized by some quantity 
y (in the case of the NDHO, this is the radius). A given solution, parametrized by M. will 
intersect the 8-neighbourhood at a~unique point (XO, yo). From this, we may construct the 
angle B(yo) = arctanxo/yo. 

The angle B(y )  we term the control angle and the reason should be obvious. To 
keep the system on a solution with parameter yo. we need only wait until the trajectory 
approaches the origin and then perturb it so that it leaves at angle B(y0). This perturbation 
will be quite small, of the order of 6, with the size of 6 being determined largely by the 
noise amplitude. We see that in a piecewise deterministic system, there is a continuum of 
possibilities available through small control perturbations. If a change in system behaviour 
were required, it is easily and quickly effected by simply changing B(y). In fact, one could 



5550 D D Dixon 

( a )  :.o 

0.8 

0.6 
3 . 0 , 4  

0.2 

0.0 

-0.2 

- 

0 20 40 60 $0 
I 

- - - 
o s  

0.2 

0.0 

-0.2 
0 20 40 80 80 

0.6 

0.6 

." 0.4 
0.2 

0.0 

-0.2 

- - - 

0 20 LO 60 $0 
1 

( a )  : o  ( b )  ~ i . 0  

0.6 0.8 

0.6 0.6 - - - 2 - 
0.L - 0.' 
0.2 0.2 

0.0 0.0 

-0.2 -0.2 
0 20 40 60 80 0 ' 20 40 60 80 

I 1 

( e )  1.0 

0.8 

0.6 

" 0.4 

0.2 

0.0 

-0.2 

3 .+ 

0 20 10 60 8C 
I 

06 

.. 0.4 

0 ~ 2  

0.0 

-0.2 

- - 

0 ,, 20 40 60 80 
1 

Figw 7. The control algorithm 
begins to  break down if 6 is chosen 
to be compamble to the noise level. 
Signals are shown for (a) 6 = l@u. 
(6) I03a, (c) 102a. and (d)  IOU, 
where U is the RMS of the noise. 

vary 6 ( y )  as a function of time to induce arbitrarily complex behaviour. 
As an example, we have applied this control algorithm to (11). To simulate the effect 

of noise, a small (IO4 of the integration stepsize) normally distributed random number was 
added at each integration step. The controlled signals for various values of 6 are shown in 
figure 6. Figure 7 shows the effect of noise for different values of 6. 
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7. Discussion 

The type of ‘non-determinism’ described above should not be construed as implying 
complete stochasticity. Indeed, the behaviour of both the NDHO and neutron star model are 
uniquely determined away from the singularity. It is at this point, and this point only, that 
the non-deterministic nature of the equations arises. In the presence of random fluctuations, 
which are ubiquitous (though perhaps s d l )  in physical systems, the non-detenninism, 
albeit at a single point, becomes important. The resulting dynamics consists of a random 
sequence of ‘transient’ oscillations. 

As yet, there exists no firm evidence that the behaviour described here occurs in 
nature (although some indications exists from studies of biological systems [SI). However, 
application of several standard measures (power spectrum, Lyapunov exponent, etc) to a 
time series generated by (1 1) would lead one to believe that one is examining an instance 
of deterministic chaos [9 ] ,  so the lack of evidence to date places little constraint on the 
question. As the singular behaviour occurs only at a single point, discriminating piecewise 
deterministic from chaotic dynamics is a difficult task, though work is progressing in this 
area. However, the ability to make such a distinction may prove important, as issues 
of prediction and control would be addressed much differently for a nowdeterministic 
chaotic system. Crutchfield has shown that in the context of model building, assuming 
determinism when the underlying process is non-detenninistic. leads to undue complexity in 
the model [17]. It would seem reasonable to search for piecewise deterministic dynamics 
in apparently complex systems, especially in cases where traditional analysis tools (which, 
again, assume determinism) have failed. Further, it may be possible to construct non- 
deterministic systems and exploit the ability to control them via small perturbations. 
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